Classification of Spherical Nilpotent Orbits in Complex Symmetric Space
نویسندگان
چکیده
Let G be the adjoint group of the simple real Lie algebra g , and let K C → Aut(p C ) be the complexified isotropy representation at the identity coset of the corresponding symmetric space. We classify the spherical nilpotent K C orbits in p C .
منابع مشابه
Computing Maximal Tori Using LiE and Mathematica
This paper describes an algorithm for computing maximal tori of the reductive centralizer of a nilpotent element of an exceptional complex symmetric space. It illustrates also a good example of the use of Computer Algebra Systems to help answer important questions in the field of pure mathematics. Such tori play a fundamental rôle in several problems such as: classification of nilpotent orbits ...
متن کاملSpherical Nilpotent Orbits and the Kostant-sekiguchi Correspondence
Let G be a connected, linear semisimple Lie group with Lie algebra g, and let KC → Aut(pC ) be the complexified isotropy representation at the identity coset of the corresponding symmetric space. The Kostant-Sekiguchi correspondence is a bijection between the nilpotent KC -orbits in pC and the nilpotent G-orbits in g. We show that this correspondence associates each spherical nilpotent KC -orbi...
متن کاملNilpotent Orbits and Theta-stable Parabolic Subalgebras
In this work, we present a new classification of nilpotent orbits in a real reductive Lie algebra g under the action of its adjoint group. Our classification generalizes the Bala-Carter classification of the nilpotent orbits of complex semisimple Lie algebras. Our theory takes full advantage of the work of Kostant and Rallis on pC , the “complex symmetric space associated with g”. The Kostant-S...
متن کاملClassification of Strict Wonderful Varieties
In the setting of strict wonderful varieties we answer positively to Luna’s conjecture, saying that wonderful varieties are classified by combinatorial objects, the so-called spherical systems. In particular, we prove that strict wonderful varieties are mostly obtained from symmetric spaces, spherical nilpotent orbits or model spaces. To make the paper self-contained as much as possible, we sha...
متن کاملComponent Groups of Centralizers of Nilpotents in Complex Symmetric Space Donald R. King
Let G be the adjoint group of a simple Lie algebra g, and let KC ! Aut(pC) be the complexi ed isotropy representation at the identity coset of the corresponding symmetric space. If e 2 pC is nilpotent, we consider the centralizer of e in KC. We show that the conjugacy classes of the component group of this centralizer can be described in terms generalizing the Bala-Carter classi cation of nilpo...
متن کامل