Classification of Spherical Nilpotent Orbits in Complex Symmetric Space

نویسندگان

  • Donald R. King
  • F. Knop
چکیده

Let G be the adjoint group of the simple real Lie algebra g , and let K C → Aut(p C ) be the complexified isotropy representation at the identity coset of the corresponding symmetric space. We classify the spherical nilpotent K C orbits in p C .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Maximal Tori Using LiE and Mathematica

This paper describes an algorithm for computing maximal tori of the reductive centralizer of a nilpotent element of an exceptional complex symmetric space. It illustrates also a good example of the use of Computer Algebra Systems to help answer important questions in the field of pure mathematics. Such tori play a fundamental rôle in several problems such as: classification of nilpotent orbits ...

متن کامل

Spherical Nilpotent Orbits and the Kostant-sekiguchi Correspondence

Let G be a connected, linear semisimple Lie group with Lie algebra g, and let KC → Aut(pC ) be the complexified isotropy representation at the identity coset of the corresponding symmetric space. The Kostant-Sekiguchi correspondence is a bijection between the nilpotent KC -orbits in pC and the nilpotent G-orbits in g. We show that this correspondence associates each spherical nilpotent KC -orbi...

متن کامل

Nilpotent Orbits and Theta-stable Parabolic Subalgebras

In this work, we present a new classification of nilpotent orbits in a real reductive Lie algebra g under the action of its adjoint group. Our classification generalizes the Bala-Carter classification of the nilpotent orbits of complex semisimple Lie algebras. Our theory takes full advantage of the work of Kostant and Rallis on pC , the “complex symmetric space associated with g”. The Kostant-S...

متن کامل

Classification of Strict Wonderful Varieties

In the setting of strict wonderful varieties we answer positively to Luna’s conjecture, saying that wonderful varieties are classified by combinatorial objects, the so-called spherical systems. In particular, we prove that strict wonderful varieties are mostly obtained from symmetric spaces, spherical nilpotent orbits or model spaces. To make the paper self-contained as much as possible, we sha...

متن کامل

Component Groups of Centralizers of Nilpotents in Complex Symmetric Space Donald R. King

Let G be the adjoint group of a simple Lie algebra g, and let KC ! Aut(pC) be the complexi ed isotropy representation at the identity coset of the corresponding symmetric space. If e 2 pC is nilpotent, we consider the centralizer of e in KC. We show that the conjugacy classes of the component group of this centralizer can be described in terms generalizing the Bala-Carter classi cation of nilpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004